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This work deals with the modelling and simulation of the effect of rotor eccentricity in permanent magnet synchronous machines.
Static eccentricity is analyzed in a 2D setting. The 3D effect of an inclined rotor shaft is accounted for considering 2D slices
and interpolating on a grid constructed from finite element simulations (response surface model). Common tools of uncertainty
quantification, i.e. generalized polynomial chaos and Monte Carlo, are used to study the effect on the electromotive force. The focus
of the abstract is the construction of the response surface models used.
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I. INTRODUCTION

THE MACHINE used in this work is a 3-phase 6-pole
permanent magnet synchronous machine (PMSM). The

uncertainties handled are linked to the position of the rotor
within the stator, known as eccentricity. One of the unde-
sired effects of eccentricity is for example the production of
noise [1]. To determine the influence of eccentricity the elec-
tromotive force (EMF) in the stator windings is calculated by
using the standard techniques from uncertainty quantification
(UQ), i.e. generalized Polynomial Chaos (gPC) and the Monte-
Carlo (MC) approach. In this work different ways to construct
response surface models (RSMs) are discussed.

II. METHODOLOGY

A. Eccentricity models

1) Static eccentricity
The first model deals with uncertain static eccentricity (SE).

A coordinate system is assigned to the nominal position of
the rotor, i.e. in the centre of the stator. The position of
the rotors centre in the static eccentric case is described in
polar coordinates, i.e. R depicts the magnitude and θ the
angle of displacement. R(ω) and θ(ω) are independent random
variables on the probability space (Θ,Σ, P ). R and θ are
modelled as Gaussian and uniformly distributed, respectively:

R ∼ N (0, σ2) and θ ∼ U(0,
π

3
), (1)

where σ is the standard deviation such that 3σ corresponds to
0.2 mm.

2) Inclined rotor shaft
In a more realistic setting, the position of the two bearings

that mount the rotor in the stator are uncertain (Fig. 1). The
positions can again be expressed in polar coordinates (R1, θ1)
and (R2, θ2) such that

R1, R2 ∼ N (0, σ2) and θ1, θ2 ∼ U(0,
π

3
), (2)

where the σ has the same interpretation as for SE.

Fig. 1: Inclined rotor within stator. The green and the red dot
correspond to the positions of the front and the back bearing,
i.e. (R1, θ1) and (R2, θ2). The dashed line depicts the centre
of the rotor throughout the stator bore.

B. Finite element method
The magnetostatic approximation of the Maxwell equations

is sufficient to describe PMSMs, meaning that eddy currents
and displacements currents can be neglected with respect to
the source currents. Introducing the magnetic vector potential
~A one can retrieve from Ampère’s law the elliptical PDE

~∇×
(
ν(ω)~∇× ~A(ω)

)
= ~Jsrc − ~∇× ~Hpm, (3)

with Dirichlet boundary conditions. The dependency on the
stochastic parameters is expressed by ω, ν is the reluctivity
of the material, ~Jsrc is the source current density and ~Hpm
the coercivity of the magnets. Applying the Galerkin approach
will result in a system of equations, Kν(ω)u(ω) = jsrc +
jpm, where Kν(ω) is the FE system matrix e.g. [2], [3] and
u(ω) are the degrees of freedom. We use a 2D Ansatz with
~A =

∑
j uj ~wj =

∑
j uj

Nj

`z
~ez , where ~wj are dedicated edge

shape functions related to the nodal finite elements Nj(x, y, ω)
associated with a triangulation of the machine’s cross-section.
`z denotes the machine length and ~ez is a unit vector in the
z-direction. The EMF is calculated using the loading method
[4]. The geometric variations are modelled without remeshing
the finite element triangulation in order to reduce numerical
noise in the stochastic outputs.
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Fig. 2: Results for RSM-MC on a 17 x 5 tensor grid compared
with the standard gPC approach for the expectation value of
the EMF.

C. generalized Polynomial Chaos and response surface mod-
els

Besides the standard approach, MC, the multivariate gPC
gains interest in UQ. The main advantage of gPC is the fast
convergence for low dimensional problems [5]. Let ~X be a
random vector of dimension d such that ~X = (X1, . . . , Xd)
where Xi are independent random variables. Its response
function Y = Y ( ~X) can then be approximated by the gPC
expansion on a tensor grid

Y ≈
p∑
k=0

ykΦk( ~X), (4)

where yk are the expansion coefficients and Φk( ~X) are or-
thogonal polynomial basis functions, i.e. E[Φi( ~X)Φj( ~X)] =
E[Φi]δij . The gPC bases for normal and uniform distributions
are constructed from Hermite polynomials and Legendre poly-
nomials, respectively [6].

A RSM is constructed by sampling the points of a m × n
tensor grid, requiring mn FE simulations. In the subsequent
UQ, the quantities of interest for intermediate parameter sets
are obtained by cubic spline interpolation.

III. RESULTS AND DISCUSSION

For SE, four simulation approaches are compared. The first
one is a standard gPC approach on a 5x5 tensor grid requiring
25 FE evaluations. The second one is a standard MC approach
with 1500 randomly chosen FE evaluation points. The third
and fourth approach construct RSMs in the [R,θ] space with
a 17x5 and 5x5 tensor grid, respectively. The 5x5 tensor grid
corresponds to the one used in the standard gPC approach. The
17x5 tensor grid only requires 85 FE evaluations. While on
the response surface grids a MC simulation with 108 samples
is performed, using cubic spline interpolation for retrieving
values for the EMF in between grid points with negligible
numerical effort. Table I compares the numerical values for SE
obtained by the four approaches. Fig. 2 shows the comparison
between RSM-MC on a 17x5-tensor grid and the standard
gPC. The standard MC approach did not yet converge after
1500 samples. For the RSM-MC approach proposed here the
estimated interpolation error (Int. Err.) is bigger for the 5x5
grid than for the 17x5 grid, as has to be expected.

The effect of rotor inclination is studied by using the RSMs
in combination with MC using 108 samples.

Table I: Numerical results of the EMF for SE.

Method Exp. Value (V) St. Dev. (V) Int. Err.
stand. gPC (5x5 grid) 47.4290 1.38883 · 10−2 -

stand. MC (1500 samp.) 47.4286 1.29809 · 10−2 -
RSM-MC (5x5 grid) 47.4290 1.38881 · 10−2 10−6

RSM-MC (17x5 grid) 47.4290 1.38875 · 10−2 10−8

Table II: Numerical results of the EMF for the inclined shaft.

Method Exp. Value (V) St. Dev. (V) Int. Err.
RSM-MC (5x5 grid) 47.4257 6.94342 · 10−3 10−6

RSM-MC (17x5 grid) 47.4257 6.94302 · 10−3 10−8

Each sample corresponds to the positions of the two bear-
ings, which in turn correspond to two points in the RSMs. The
intermediate slices correspond to points along a path in the
RSM. The EMF of an inclined rotor configuration is found by
interpolating and averaging along the path in the RSM. Table
II shows the numerical results for the inclined rotor model. In
comparison to SE, the standard deviations are much smaller.
This confirms the fact that SE is the most pessimistic scenario,
which is only attained in the inclined model when both bearings
are equally displaced by chance.

IV. SUMMARY

RSMs are constructed for the uncertain parameter space by
FE evaluations for the points of a tensor grid. MC simulation
on the basis of such RSMs outperforms the standard MC
technique with FE simulation for the sample points and gPC
on a comparable tensor grid. MC in combination with an RSM
is particularly attractive for dealing with inclined rotors.
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